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ISLAMIC STAR PATTERNS

The geometrical ornament of Islam has fascinated
Western observers for well over a century, and con-
tinues to provide material for numerous studies at-
tempting to explain its nature in esthetic, mathemat-
ical, mystical, or even cosmological terms. The ‘‘geo-
metrical’”’ content of this ornament is obvious, but in
spite of the fact that many works have been published
on the construction and analysis of Islamic patterns,!
none has delved very deeply into the subject, and no
comprehensive work has yet appeared dealing in a
comparative and systematic manner with the whole
range of patterns, both geographically and historically.?
There is clearly a need for a more scientifically based
account of these patterns, although it is not so much the
theoretical knowledge of the professional mathemati-
cian that is required for such a study, as the precise
mathematical language and rigor which he might bring
to bear on the subject. There is still no generally
accepted terminology for the many different kinds of
motifs used in Islamic geometrical ornament, nor for
the methods of forming repeating patterns from them.
In the absence of a definitive work along these lines, I
will attempt here to show ways in which some of the
simpler patterns might be developed from a number of
elementary principles.

Opinions have differed as to the part played by
mathematics in the genesis, development, and con-
struction of the more complicated Islamic patterns.®
Some have seen a gradual, convergent evolution from
many different types of pre-Islamic ornament,
culminating in the often bewildering complexities of the
later, fully differentiated Islamic patterns. According to
this view it was presumnably the widening practical
experience of skilled craftsmen which alone chose the
paths taken at each level of increasing elaboration.
Others, on the contrary, have seen clear evidence for
the intervention of the professional mathematician in
the design and invention of these patterns, or at least
have ascribed to the artisans themselves a considerable
knowledge of theoretical geometry and an ability to
apply this knowledge to the development of new kinds
of geometrical ornament.

We shall perhaps never have a final answer to this
controversial question,* yet it seems that Western
critics have seriously underestimated the ability of
native craftsmen to retain large amounts of empirical
knowledge on pattern design and construction in the
absence of any understanding of the theoretical back-
ground which a professional mathematician might
bring to bear on these problems. It may be an advan-
tage for a modern author to develop a systematic
analysis of Islamic patterns in purely mathematical
terms, but a knowledge of pure mathematics or
geometry is unnecessary for those who wish merely to
draw Islamic patterns or invent new ones. A theoretical
background will often allow the artist to see a number
of combinatorial possibilities more quickly than the use
of trial-and-error methods, but it forms no substitute
for true creativity. It is perhaps significant that a genu-
ine application of mathematical insight to a systematic
analysis of Islamic geometrical patterns reveals a far
greater range of possibilities than were ever discovered
by the Mushms themselves.®

A great deal of this ornament is immediately and
unmistakably recognizable as ‘‘Islamic,”” and yet in its
entirety it does not form such an easily distinguishable
body of geometrical ornament. In fact the whole range
of Islamic patterns represents an amalgam of many dif-
ferent styles, some simply adapted and absorbed from
classical sources and from various cultures with which
Islam came into contact during its early expansion.
Since it is not possible to cover all types of Islamic pat-
terns here, I will limit myself to an examination of cer-
tain of the more interesting and typical of them.

There is one class of geometrical patterns which
Islam has made its own. This group comprises what
one might term the ‘‘star patterns,’’ since they include
star-like motifs, linked or oriented according to certain
precise rules to produce endlessly repeating two-
dimensional patterns. The star patterns are unques-
tionably the most beautiful and intricate of all Islamic
patterns, and they owe their beauty in no small
measure to a high degree of symmetry at all levels.
Indeed, the star motifs themselves invariably possess n-
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fold rotational symmetry, n representing a range of
whole numbers from 3 to almost 100. Although any
pattern which repeats in two directions must of
necessity pertain to one or another of 17 fundamentally
distinct arrangements,” a classification by means of
such symmetry groups is of little use in a detailed
analysis of Islamic geometrical patterns. A given
Islamic pattern will frequently employ a small number
of précisely determined shapes, some of which become
repeated within the pattern in many ways not allowed
for under the four elementary operations, or isometries,
of classical plane symmetry; ¢ each of the latter must act
on the whole two-dimensional plane, not merely locally
on small parts of it. Similarly, although many motifs
themselves possess higher than 6-fold rotational sym-
metry, they cannot form repeated centers of similar
rotational symmetry in the plane as a whole, since the
permitted centers can have no more than 2-, 3-, 4-, or
6-fold symmetry (such ‘‘rotocenters’”” are termed
respectively diads, triads, tetrads, and hexads). On the
surface of the sphere the restrictions are somewhat dif-
ferent, whereas in the hyperbolic plane virtually
anything is possible.®

In their simplest form all Islamic geometrical pat-
terns are examples of periodic tilings (or tessellations)
of the two-dimensional plane, consisting of polygonal
areas or cells of various shapes abutting on neighboring
cells at lines termed the edges of the tiling, and with
three or more cells meeting at points termed the ver-
tices, or nodes, of the tiling. In general, the cells are not
required to be convex polygons, nor the edges to be
straight lines, and there is no restriction on the number
of edges or cells meeting at each vertex.!®

From the earliest times Islamic ornament adopted
the widespread interlacing band form of linear decora-
tion, whereby the original lines of the pattern are
represented by straps or bands, executed in such a way
as to give the impression of weaving alternately over
and under one another. This style of ornament had its
origins in antiquity, and must ultimately derive by
imitation from various types of weaving, plaiting, or
basketwork. As an artistic device 1t serves to give cohe-
sion to a whole design. We may note that an inter-
lacing-band style can only be achieved when the
original tiling consists entirely of 4-way nodes, that is,
four edges (and therefore cells) meet at every node.!!
Ideally, opposite angles at each node should be equal,
which means that the four edges meeting at that node
become a pair of lines intersecting at a crossover point.
Patterns consisting entirely of 4-way nodes may be
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referred to as true interlacing patterns, whether or not
they are drawn as interlacing bands.

Interlacing patterns have another important prop-
erty: in their linear, as opposed to interlacing-band,
form the cells of any pattern may be colored alternately
in two modes—say, black and white—so that no two
cells of the same mode meet at a shared edge. A
chesshoard is a familiar example. Strictly speaking, the
possibility of a two-mode coloring is inherent in any
tiling in which an even number of cells or edges meets
at every node. Nen-interlacing patierns contain at least
some nodes which are not 4-way. If some of these are
odd-numbered, then a two-mode coloring is no longer
possible. The star patterns in general include examples
from both interlacing and non-interlacing categories.

Islamic star motifs owe their beauty and regularity to
a feature which they share with the regular convex
polygons: all derive from sets of points equally
distributed around the circumference of a circle. When
pairs of adjacent points in any such set are joined by
straight lines until a single circuit is completed, the
result is a regular convex polygon. However, it is possi-
ble to continue joining up every other point, or every
third point, and so on, to produce many beautiful star-
like figures. In a loose sense these may all be termed
“star polygons,”’ although a star polygon, properly
speaking, results only when all the lines so produced
form a single circuit surrounding the center of the
figure more than once. The set of points on the initial
circumference comprises the versices of the star polygon,
but the sides of a star polygon intersect one another at
various additional points, which are not counted as ver-
tices, although they divide each side into a number of
segments.

The earliest Islamic star motifs were based on a star
polygonal construction, but complete star polygons
were rarely used as ornamental motifs (usually in isola-
tion, as medallions). Initially such a construction pro-
duces a space at the center of the figure, in the shape
of a regular polygon (fig. 1). In authentic Islamic orna-
ment this central space is usually transformed into a
star-shaped area by the omission of one or more of the
middle segments on all sides of the star polygon. Usu-
ally all but the last two segments at each end of a side
are omitted, thus producing the typical Islamic star
motif (fig. 2). This figure therefore consists of an inner
cell, or central star, and a number of outer cells in the
shape of kites. Occasionally all but the outermost seg-
ment are omitted (fig. 3), and we thereby arrive at the
simplest form of a regular geometrical star.
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Star motifs of these types can be distinguished by a
concise notation, giving data on three quantities: the
number of initial vertices; the method of joining up the
vertices to produce the original star polygon (i.e., two
by two, three by three, and so on); and the number of
end segments remaining at each end of the sides of the
star polygon. These three quantities can be represented
by n, d, and s, respectively, and the complete symbol
for the basic Islamic star as (n/d)s. Thus, the star shown
in fig. 2 can be designated an (8/3)2 (this may be read
as an ‘‘eight over three, two-segment star’’). Obviously
this notation, which is derived from the mathematical
notation for star polygons, is applicable to any Islamic
star constructed by drawing straight lines between pairs
of points on a circle. Indeed, it may even be adapted
to certain other types of construction, if we allow non-
integral values for d.

Motifs based directly on star polygons (sens. lat.) are
easily constructed using a single circle and a number of
points equally distributed on the circumference of that
circle. No other initial construction is necessary. Many
later Islamic star motifs, however, are not derived in
this way, although they may still consist of a central star
and surrounding kites. In these later star motifs the
slope of the lines forming the star is such that they can-
not be constructed simply by joining pairs of points on
the circumscribing circle of the motif. In these cases,
one or more additional concentric circles are needed to
determine the inner points of the star motif and hence
to complete the lines (fig. 4). Islamic star motifs are of
many different types, and the main varieties will be
indicated below, but all include a simple star as a cen-
tral cell. The precise metrical properties of any star
motif may sometimes be arbitrarily chosen, but fre-
quently depend on geometrical considerations concern-
ing the relation of the motif to other clements in a
pattern.

The symmetrical properties of any regular n-pointed
star motif or n-sided regular polygon (n being any
whole number greater than two) can be represented as
a system of 2n radii diverging from the geometrical
center of that motif. This figure is conveniently termed
a star-center; it consists of n principal radii, through the
main, outer points of the motif, and n secondary radii,
alternating with them. The continuing invention of
fundamentally new star patterns entails a search for all
suitable arrangements of star-centers in the two-dimen-
sional plane, but the number of possibilities is limited
by the precise way in which each star-center must be
oriented in relation to its nearest neighbors. In the
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Figs. 1-4. The formation of star-motifs from star polygons.

method of linking star-centers that is preferred above
all others in Islamic patterns, one radius from each
star-center of a neighboring pair is coincident with the
straight line joining their centers. In the case of a pair
of star motifs, their centers and shared point of contact
lie on a single straight line (fig. 5). This is therefore
termed a collinear link.

Another acceptable method of linking nearby star-
centers is by having their nearest radii parallel, rather
than collinear. In this case the straight line joining their
centers no longer coincides with a radius of either star;
such a relation may be termed a parallel link (fig. 6).
Parallel links between star motifs are principally found
in certain derivative patterns (described below) which
are usually far more difficult to construct with a ruler
and compass than those using collinear links. (It is
probable that most of these derivatives were originally
composed through rearrangements of certain elemen-
tary mosaic shapes—for example, cut tiles or pieces of
wood inlay.)

Rules such as these for linking adjacent star motifs
were never explicitly stated by Muslim artists, but were
applied, probably unconsciously, in large numbers of
varied patterns throughout Islam. Indeed, the employ-
ment of collinear links to join star- or flower-like motifs
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Fig. 6. A parallel link between two 10-pointed stars.

antedates their use in Islamic patterns by many cen-
turies, and has probably always been felt instinctively
to represent a more elegant method of pattern com-
position.

Many early forms of repeating patterns were based
on simple fractional divisions of underlying grids of
equilateral triangles or squares, both of which require
the ruling of sets of parallel lines right across the pat-
terned area. It was to such grids that the first designers
of Islamic patterns turned to produce the earliest star
patterns. The simplest procedure is to center a star
motif on every vertex of the grid, with a radius equal
to half the edge length of the grid polygons. The motifs
are then oriented so that certain of their principal radii
coincide with grid lines, and each pair of adjacent
motifs meets at the midpoint of an edge of the grid.
Thus, collinear links are automatically established.
Since the triangular and square grids themselves have
respectively 6- and 4-way vertices, the simplest motifs
which can be used in this way will have 6 of 4 points.
In fact, it should be obvious that motifs with any
numbers of points which are integral multiples of these
values can be similarly placed on the grid vertices.'?
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It is not easy to establish the exact date at which sim-
ple star patterns of this kind were first used in Islamic
architectural decoration. Some attempts have been
made to explain the historical and developmental
origins of the first rectilinear star patterns,'® but since
curvilinear versions of many of these occurred even
earlier, perhaps one should really try to explain the
origins of the latter. In any discussion of historical
origins, we must bear in mind that although it is still
theoretically possible to locate the earliest surviving
version of every distinct pattern, it cannot necessarily
be assumed that any one of these really represents the
first historical occurrence of that particular pattern. It
is more than likely that most early examples of the art
have long ago crumbled to dust. Nevertheless, suffi-
cient material has survived from the eighth to the tenth
centuries to give a tantalizing glimpse of what must
have been an extremely rich fund of very ecarly geo-
metrical ornament. Recognizable precursors of the first
star patterns started to appear in the Middle East as
early as the beginning of the eighth century, in the form
of open work window grilles in the Great Mosque at
Damascus (715),'* the palace of Qasr al-Hayr al-
Gharbi in Syria (727),'® and the palace of Khirbat al-
Mafjar in Jordan (743).'% Although some of these
designs contain star-like elements, it is not always clear
whether they represented distinct motifs in the artist’s
original conception, or whether they arose merely as
residual spaces between groups of overlapping circles,
circular arcs, or other shapes. In some cases, however
(for example, that shown in fig. 7, of which almost iden-
tical versions survive from Qasr al-Hayr al-Gharbi and
Khirbat al-Mafjar), we are probably correct in inter-

Fig. 7. A pattern from the eighth century with curvilinear 8-pointed
stars.
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preting the pattern as consisting essentially of an array
of star motifs (in this case, of curvilinear 8-pointed
stars) in contact.

Two of the earliest repeating patterns using simple
rectilinear stars consisted of 6- and 8-pointed stars,
respectively (figs. 8 and 9), both of which had their
origins in classical antiquity.!” In an Islamic context the
star-and-cross pattern (fig. 9) first occurs in ninth-
century Samarra;'® a version of the pattern with
6-pointed stars occurs in the mosque of Ibn Tulun at
Cairo (876-79);'® while both can be seen in stucco from
the palace of Madinat al-Zahra (936-76) in Spain,*
and in al-Hakim’s mosque in Cairo (1003).2* However,
the star-and-cross pattern probably appeared even ear- Figs. 8-9. Two of the earliest rectilinear star patterns.
lier, since a rectilinear version occurs on one of the win-
dows from Qasr al-Hayr al-Gharbi,?? in which all line

segments are extended as straight lines running in
interlaced form right through the pattern. Another

example of the pattern with 6-pointed stars occurs in an w
early-eleventh-century house excavated in Siraf.??
patterns containing 6- and 8-pointed rectilinear stars

Thus by the end of the tenth century at the latest,

were fairly widespread, and it probably required little
intellectual effort on the part of the original artists to
conceive the idea of incorporating simple stars with
greater numbers of points in repeating patterns.** It is
not until the second half of the eleventh century that
examples survive, however. A pattern with 12-pointed
stars superimposed on a triangular grid occurs on the
earlier of the two Kharragan tomb towers (1067-68)%
in northwestern Iran (fig. 10). A related pattern, using
the same (12/4)2 stars, but on the square grid (fig. 11),
might be expected to have been discovered at about the
same period, but no early examples appear to have sur-
vived. These patterns were later among the most wide-
spread of all star patterns; they are found from

Morocco to Central Asia, indicating in both cases very
early discovery and dissemination. Similarly a pattern
of (8/3)2 stars (fig. 12) had probably been discovered at
this time, since the basic star itself was already in
existence,?® but again no early examples appear to have : : , :

survived, though what could be regarded as a cur-
vilinear version from the eighth century is illustrated in
fig. 7.

The patterns developed so far immediately illustrate
an important feature in the execution of nearly all
Islamic star patterns. When the number of points in the
stars is greater than the number of lines radiating from

each node of the grid on which they are superimposed,
there remains the problem of what to do with the Fig. 11. 12-pointed stars on a grid of squares.
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““free’”’ vertices of each star, i.e., those not in direct
contact with neighboring stars. The simplest and most
elegant solution is to continue the edges of the stars
through each free vertex until they meet similarly pro-
duced lines from neighboring stars. In the case of the
square array of 8-pointed stars (fig. 12) this results in
a small interstitial 4-pointed star, whereas in the case of
the triangular array of 12-pointed stars (fig. 10) a small
equilateral triangle is produced. In these two patterns
cach star contributes only a single free vertex in each
grid polygon, and the total number of free vertices in
each polygon is obviously equal to the number of sides
in that polygon. The majority of star patterns obtain a
greater measure of continuity between their constituent
star motifs by bridging the space between free vertices
in this way, although the artist is always at liberty not
to do so if he wishes. The additional lines thus pro-
duced by joining up such free vertices may be referred
to as constituting the interstitial pattern, since they occur
in the residual space between groups of three or more
neighboring stars. The greater the number of free ver-
tices available in this space, the more complex is the
interstitial pattern. The nature and symmetry of the
elements in the interstitial pattern are clearly related to
the symmetry of the pattern as a whole, as well as to the
types of constituent star motifs and their precise con-
struction.

Patterns using 10-pointed stars occur in the north
dome chamber of the Masjid-i Jami® at Isfahan
(1088).27 These ‘‘decagonal’’ patterns represent a
departure from traditional methods of geometrical pat-
tern design, although they result inevitably from a
logical generalization of the principles developed so far.
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It is not immediately obvious how to form repeating
patterns with 10-pointed stars, since neither of the grids
considered so far is suitable. If the stars are required to
remain in contact, using collinear links, however, it is
found that there is only one simple arrangement possi-
ble, and this could easily have been obtained after a
little trial and error (fig. 13). This pattern and the new
grid which underlies it require a more detailed analysis
(which will be given below) that leads to the formal
discovery of many kinds of patterns. These include
simultaneously two kinds of star motifs, including some
of the most widespread of all Islamic star patterns. It is
by no means suggested, however, that the original
discovery of such patterns followed from the methods of
analysis outlined here. Rather more elaborate patterns
with 10-fold motifs occur on the later, so-called Victory
Tower of Masud III at Ghazni in Afghanistan (prob-
ably dating from around 1100).2® This structure also
presents what appears to be the first occurrence in
Islam of geometrical patterns incorporating 7-fold
motifs (in fact these same patterns also include 20- and
14-pointed stars, respectively).

These “‘heptagonal’’ patterns, in which the propor-
tions of the basic repeat are determined by angles which
are multiples of 180°/7, ave extremely difficult to work
with. This difficulty is reflected in the paucity of
examples throughout the whole range of Islamic geo-
metrical ornament. About 6 percent of Bourgoin’s col-
lection®® consists of true heptagonal patterns, and in
this respect it is probably representative of Islamic pat-
terns as a whole. Indeed, patterns using many other
kinds of odd-numbered star-motifs are often very dif-
ficult to incorporate in repeating patterns, and were

Fig. 12. 8-pointed stars on a grid of squares.

Fig. 13. 10-pointed stars of Type I on a grid of 72°/108° rhombs.
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therefore seldom or never used. This is particularly so
in the case of those motifs in which the numbers of
points are prime numbers—say, 11, 13, 17, 19, and so
on.

Before analyzing some of these new kinds of pat-
terns, we must first consider the discovery and develop-
ment of what is perhaps the most typically ‘‘Islamic”
of all star motifs: the geometrical rosette (fig. 14). The pro-
totype for the general n-rayed rosette almost certainly
consisted of a 6-pointed star surrounded by six regular
hexagons (fig. 15). This configuration becomes auto-
matically incorporated in the pattern of 6-pointed stars
described above (fig. 8), but the prototypical 6-rayed
rosette seems to have been used for the first time as a
distinct motif on the Arab-Ata mausoleum (978) at
Tim, in Uzbekistan® (fig. 16), and the same pattern
reappears, with slightly different proportions, on the
earlier of the two Kharragan tomb towers.?! A method
of constructing the isolated 6-rayed rosette can be
derived from the construction used to produce the
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Figs. 14-15. 12- and 6-rayed geometrical rosettes.

Fig. 16. The carliest occurrence of a 6-rayed rosette as a discrete
motif (late 10th century onwards).
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original pattern of 6-pointed stars (fig. 17). The centers
of the (six) surrounding peripheral stars form the vertices
A of a limiting polygon of the rosette, and circles centered
on these vertices, with a radius AB, equal to half the
edge length of the limiting polygon, determine the posi-
tions of points such as C, and hence the radius CD of
the interior star of the rosette. The hexagons may be
termed the oufer cells of the rosette; the terminal
segments a of these outer cells are obtained by drawing
straight lines between such points as B and E, while the
sides b of the outer cells are obtained by drawing lines
through points such as C, parallel to a principal radius
BD of the rosette. In such a case the outer cells of the
rosette may be said to possess collinear terminal
segments, and parallel sides. Alternatively the rosette
itself can be described as a parallel-sided rosette with
collinear terminal segments.

The construction just given has purposely made no
reference to 6-fold symmetry or to absolute angle sizes,
so it is capable of immediate generalization to include
geometrical rosettes with any number of rays (fig. 18),
provided only that the limiting polygon is a regular
polygon. A geometrical rosette of this kind will auto-
matically be produced, with collinear terminal seg-
ments and parallel sides. In addition, although it is not
immediately obvious, segments a and b are always equal
(this can be proved quite easily). The outer cells of the
general n-rayed rosette are always symmetrical hex-
agons, but only when n = 6 are they regular.

When 7 is greater than 6, the geometrical rosette is
nearly always constructed so as to include a 2-segment
star, as defined above, in the circle with radius CD (fig.
18). This may be termed the outer star of the rosette, and
this in its turn contains the inner or central star. With
regard to constituent polygonal areas, the n-rayed
rosette now consists of » hexagonal outer cells, n kite-
shaped middle cells (or midcells), and an n-pointed cen-
tral star. Since the angle BAC is greater when n is
greater than 6 (cf. figs. 17, 18) it is obvious that exactly
regular 6-pointed peripheral stars are only possible
when n = 6. For higher values there is not enough
room for a perfectly regular 6-pointed peripheral star,
but a regular 5-pointed peripheral star only becomes
possible when n = 10. Furthermore, since the angle
between a pair of adjacent sides of any regular polygon
is never 180°, it is obvious that regular 4-pointed
peripheral stars are impossible, with the properties
given above. Thus, 5-pointed peripheral stars
inevitably come to be included in many patterns con-
taining geometrical rosettes, and although they can be
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Figs. 17-19. The formal construction of the geometrical rosette, gen-
eralized from the 6-rayed example in fig. 17.

regularly formed in relatively few cases, ideally they are
made as regular as is possible without reducing the
symmetry of the main rosettes. The highest degree of
regularity is achieved as follows: the outer points of a
peripheral star must lie on a circle, the center of which
is a vertex of the limiting polygon of the parent rosette;
the angles at its outer points should be equal; the sides
or segments bordering all outer points should be equal;
and the peripheral star should form collinear links with
the outer star of its parent rosette(s), and with neigh-
boring peripheral stars. Furthermore, in this most reg-
ular form, the bisectors of its outer angles meet at a
single point, which may be termed the center of the
peripheral star, since it coincides with the center of the
circumscribing circle.

If a pair of peripheral stars is shared between two
equal rosettes which are joined by a collinear link (fig.
19), then it is obvious that not only do the rosettes share
an outer point B, but their limiting polygons share an
edge AA’; in other words the edge length of the two
limiting polygons is the same. In fact, a pair of linked

189

rosettes could be constructed on the basis of a pair of
regular polygons sharing an edge, and indeed the con-
struction is easily generalized to include different kinds
of regular polygons, and therefore rosettes of different
sizes, but in this case only one of the rosettes can be
constructed strictly according to the principles we have
established so far. The slopes of the various line seg-
ments of the other rosette are then largely determined
by those in the first rosette, but the sides and terminal
segments of the outer cells of the second rosette can still
be constructed as equal lengths, if required, by noting
that the shoulder, or subterminal point (G, fig. 18)
should always lie on the bisector of angle BAC. In order
to produce repeating patterns with geometrical rosettes
one might then search for tessellations or open arrange-
ments of regular polygons in which pairs of adjacent
polygons share an edge. These are the essentials of
what might be termed the “‘polygons in contact’” (PIC)
method of constructing certain Islamic star patterns
that was first enunciated as a general principle by E. H.
Hankin,®? although it was occasionally used earlier by
Bourgoin.?* However, in most cases it is not necessary
to draw a complete arrangement of limiting polygons
since the construction of just one shared edge is suffi-
cient to determine the relative circumradii of a pair of
adjacent rosettes, and subsequently the radii of their
outer stars. In fact there are other exact constructions
possible which achieve the same result without using
the limiting polygons at all.

The earliest patterns with geometrical rosettes were
mostly constructed with the properties, if not the
methods, outlined above, i.e., with collinear terminal
segments and parallel sides. Apart from the case when
6, rosettes are completely absent from the
extremely rich ornamentation of the two Kharraqan
tomb towers (1067-68 and 1093, respectively), but
geometrical rosettes with 10 rays occur in the north
dome chamber of the Masjid-1 Jami®, Isfahan (1088).3*
Rosettes with 8, 11, 12 and 16 rays occur in various
patterns round the mihrab of the mosque at Barsian,
Isfahan (1134)*"—and, incidentally, include the earliest
example of a remarkable pattern with 4-, 5-, 6-, 7-, and
8-pointed stars.?® Patterns with 8- and 10-rayed rosettes
occur on wooden minbars from the mosque of Ala al-
Din at Konya (1155),%” and from the Agsa Mosque at
Jerusalem (1168).%8 It seems possible, however, that the
6-fold case was generalized to include 8-, 10-, and per-
haps 12-rayed rosettes well before the end of the elev-
enth century, and that the majority of early examples
have simply not survived. A more thorough search of
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the relevant literature may bring to light many more
dated exaraples from this early period.

A variety of the decagonal pattern mentioned earlier,
in which the (10/3)2 stars are replaced by 10-rayed
rosettes (fig. 20), is one of the most widespread of all
Islamic star patterns, and is included in practically
every account of these patterns published by Western
authors. Reducing both to a pattern of 10-fold star-
centers (fig. 21), it is evident that they share the same
underlying grid of 72°/108° rhombuses. In a formal
sense this may be derived by distortion from a grid of
squares, or, as a tiling of 54°/72°/54° isosceles
triangles, by a similar distortion from the regular tiling
of equilateral triangles, but it is unlikely that either pat-
tern was originally composed in this way.*® Many other
pattern varieties were devised on this same basis of 10-

Fig. 20. 10-rayed rosettes (Type II motifs) on a grid of 72°/108°
rhombs.

Fig. 21. Part of the grid of 72°/108° rhombs, with the space round
each vertex divided into equal angles of 18°.
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fold star-centers, and it is therefore convenient to be
able to distinguish these varieties by some simple nota-
tion. The version with (10/3)2 stars (fig. 13) may be
designated a type I pattern, and the stars themselves as
type I motifs, since stars of this kind were the first to
appear. The pattern with geometrical rosettes (fig. 20)
may then be referred to as type II.

Both varieties display an economy of pattern shapes,
with respectively four and five different kinds (not
counting half shapes which inevitably occur at the
edges of any finite panel), and the peripheral elements
are either regular pentagons or consist of the outer
shells of regular pentagrams. In fact if the two patterns
are superimposed so that the centers of the star motifs
coincide, it will be discovered that the vertices of the
peripheral elements, pentagons and pentagrams, also
coincide.*® Furthermore, if the outer stars of the type II
rosettes are reduced to the form (10/4)1, the two types
become topologically equivalent in that the vertices of
the peripheral elements may be regarded as fixed, or
““nodal’’ points through which the slopes of the pattern
lines are infinitely variable. In this way either type may
be transformed into the other, and the varieties illus-
trated simply become special cases in an infinite series
(this may in theory be extended even further to produce
still greater variety).

One other such special case from this series is com-
monly used in Central Asian ornament (fig. 22), and
this may be designated a type III pattern. Here the
peripheral stars have their sides parallel, in pairs. An
important feature of this series is that there are always
two interstitial cells which are congruent to the outer
cells of the star motif.

Fig. 22. A pattern with 10-fold motifs of Type 111
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Unfortunately it is not possible to enter into con-
structional and other details here, so further pattern
types on the same basis can only be briefly described
and illustrated. Types IV (fig. 23) and V (fig. 24) are
simply elaborations of type I patterns and are confined
to Central Asia. Type VI (fig. 25) is also derived from
a type I, this time by expanding each kite-shaped cell

_until it overlaps its neighbors in small rhombs. Initially
the size of the expanded cells can be arbitrarily chosen,
but in certain derivatives of this type the relative sizes
of the pattern cells become rigidly determined. A fre-
quent addition to this pattern is the incorporation of
type II rosettes at the center of each type VI motif (see
fig. 25, right side). Types VII (fig. 26) and VIII (fig.
27) are also Central Asian and are ultimately derivable
from elernents of types I and III and their later elabora-
tions. In type VIII all star-centers are surrounded by
regular decagons, but only alternate centers of type VII
are so surrounded. The interiors of the decagons are
variably treated in authentic sources. The fact that type
VII patterns simultaneously contain two kinds of
centers means that either kind can be given prominence
in a small pattern area, creating quite different effects.
The same remarks apply to types IX (fig. 28) and X
(fig. 29), alternate centers of which employ regular
decagons and 20-gons, respectively. These last two,
and many related patterns, are almost exclusively used
in wooden lattice work. Types XI (fig. 30) and XII (fig.
31) again form a related pair of patterns, with similar
peripheral elements. Other varieties are possible, but
these twelve types are the most common variants.

In addition there are many derivative variations,
some of which are described below. There is some
Jjustification in giving distinct designations to these
variations, since analogous treatments were applied, or
can be applied, to many other arrangements using star
motifs of different sizes. Similar variations may there-
fore be given the same type designation, irrespective of
differences in the numbers of points in the constituent
star motifs.

The pattern of 10-fold star-centers which underlies
all the foregoing pattern types is formally related to a
group which shares the same structural basis as the
72°/108° rhombus, with respect to the pattern of prin-
cipal and secondary radii within the rhombus. The two
axes or diagonals of a rhombus divide it into four equal
right-angled triangles (fig. 21) and in the present case
each has, in addition to the right angle, interior angles
of 54° and 36°. Radii from the star-centers on these
two vertices divide their respective angles into three
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Fig. 25. A pattern with 10-fold motifs of Type VI. On the right a
Type 11 rosette is inserted.
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Fig. 26. A pattern with 10-fold motifs of Type VII. Motifs are of two
kinds, one of which is surrounded by complete decagons. Authentic
treatment of the latter is variable, as shown above.

Fig. 28. A pattern with 10-fold motifs of Type IX. This and the
following pattern are usually executed in wooden lattice.
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Fig. 27. A pattern with 10-fold motifs of Type VIII. All motifs are
surrounded by decagons.

and two divisions (fig. 32), each division of 180°/10, or
18°. Let us label the vertex with three divisions the m-
center, and that with two divisions the n-center. These
two symbols represent the number of principal radii in
each complete star-center, so that initially m=n=10.
This number may be termed the star number (or rosette
number). Let p then represent the number of inter-
radial divisions contributed by the m-center, and ¢ the
number of divisions at the n-center, so that p=3 and
g = 2. These quantities, however, may be regarded as
specific values of a general relationship between the
four variables m, n, p. and g. If we express the angles
at m and n as fractions of 180° they become respectively

Fig. 29. A pattern with 10-fold motifs of Type X. As in fig. 28, motifs
are of two kinds. Here, one kind is surrounded by complete 20-gons.

p/m and ¢/n; the right angle is obviously 1/2. As frac-
tions of 180° these three angles will therefore sum to
unity, i.e. p/m + g/n + 1/2 = 1, from which we obtain the
relationships m = 2np/(n - 2¢q) and n = 2mgq/(m - 2p).
We are interested in cases where rhombs might occur
which are structurally similar to the decagonal example
previously considered, i.e., in which p=3, g=2. Sub-
stituting these values in the two expressions above we
obtain two equations which can be solved for possible
pairs of integral values of m and n, one of which must
obviously be m = n=10. In fact the number of possible

pairs is finite, and there are only eight integral solu-
tions. These are 30,5; 18,6; 14,7; 12,8; 10,10; 9,12;
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Fig. 31. A pattern with 10-fold motifs of Type XIL
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Fig. 32. Division of the 72°/108° rhomb into equal angles of 18°,
producing a (3 x 2) rhomb.

8,16; and 7,28 (in each case the m-center is the first of
the pair of values).*!

These solutions represent in effect a series of rhombs
in which m-fold and n-fold centers occur in opposite
pairs on alternate vertices of each rhombus. We cannot
immediately build up repeating patterns with these
rhombs, however, since none of them will form a sim-
ple grid like the pattern of 10-fold star-centers with
which we began. But patterns incorporating all except
the first and last solutions have been used in authentic
ornament, although only four of them—18,6, 12,8,
10,10 and 9,12—can be used by themselves to form
repeating patterns; the others require additional
shapes. The beauty of this series is that similar varia-
tions, based on the decagonal types I-XII that we have
briefly described above, can be adapted to each
rhombus in the series. Theoretically, one might there-
fore expect at least 96 distinct patterns from this series
alone, but in cases where the resulting star-motifs are
too dissimilar in size the patterns are often not very
satisfactory.

Using the same symbols as before, we may refer to
series of (p x ¢) rhombs, and the specific solutions of
such a series may be expressed in the form (p x ¢)m,n.
Thus, the rhombs in the grid shown in fig. 21 become
(3 x2)10,10 rhombs. The general notation for par-
ticular pattern types in the (3 x 2) rhomb series may be
written as (3 x 2)m,n/'T', where T stands for one of the
twelve distinct types given above. Each rhombus in the
pattern of fig. 20 thus becomes (3 x 2)10,10/11. Strictly
speaking, of course, this notation ought to refer to the
right-angled triangle which constitutes one quarter of a
rhombus, but it is natural to extend it to include not
only the complete rhombus, but also if necessary the
two kinds of isosceles triangles which can be produced
from two such identical right triangles. The context will
make it clear to which we are referring at any particular
time. It must be pointed out that the notation
developed so far does not designate a repeating pattern,
but merely a potential elementary unit for one or more
repeating patterns. Additional symbols are required to
indicate ways in which such elementary units are incor-
porated in repeating patterns, but this is unfortunately
a question which cannot be pursued here.

As we have remarked above, the decagonal types I-
IIT form special cases of an infinitely variable series, in

_which the two interstitial cells are congruent to the

outer cells of the star motifs in each case. A similar
property is characteristic of other (3 x 2) rhombuses
with dissimilar star numbers, but in these cases the
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interstitial cells can be made congruent to the outer
cells of only one of the two motifs, namely the m-motifs
(although this congruence was rarely achieved in
authentic patterns). This is an inescapable consequence
of the underlying geometry of this series of rhombs, and
it is capable of rigorous geometrical proof (a similar
geometry is exhibited by the (2 x 1) rhomb series). Fun-
damental distinctions of this nature between the m- and
n-centers of the (3 x2) and other rhomb series were
seldom understood by the original artists, and have cer-
tainly not been appreciated by Western authors.
Among a number of lines of evidence leading to this
conclusion, we may cite the many differently con-
structed versions of patterns using the (3 x 2)12,8/11
rhombus in existence (the ‘‘rhombus’ being in fact a
square), some of which indicate that the artists con-
cerned had no idea of the ‘“‘correct’”” method of con-
struction.”? The PIC method will certainly allow the
correct relative sizes of different star motifs to be
achieved,*® and this method is essential for type I pat-
terns with dissimilar stars, but it is not appropriate for
all twelve variations dealt with above, and there are
even certain rosette patterns in which it cannot be used.

Among other rhombs in the (3 x2) series which
become incorporated in the more common patterns, we
may mention (3 x 2)12,8/II, which occurs in a variety
of versions from India to the Maghrib, as does (3 x
2)9,12/11. Type I patterns using these two rhombs
occur from India to Egypt, but seem to be absent from
the Maghrib. (3 x 2)8,16/II is commonly incorporated
in Maghribi patterns but is absent or rare elsewhere;
(8 x 2)8,16/1, on the other hand, secems to appear occa-
sionally in Iran, but is entirely absent elsewhere.
(3 x2)12,8 types VII and VIII are common in Central
Asia, but do not appear in other areas. It is, however,
difficult to compile an inventory of pattern types
throughout Islam from published sources, since it is
extremely rare to find a work which illustrates every
pattern occurring on a single monument, let alone a
whole geographical area or historical period. Of recent
publications - notable exceptions are the work of
Stronach and Young referred to above, and that of the
Erdmanns on thirteenth-century Anatolian caravan-
serais.

Variations such as the types I-XII we have been con-
sidering do not of course constitute all possible sources

for variety in patterns which use (3 x 2) rhombuses. An .

extremely common derivative type I pattern is shown
in fig. 33. Here the stars are separated by a ‘‘twinned
pentagon’’ shape, forming a linear sequence which also
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Fig. 33. A derivative pattern of 10-pointed stars, formed by re-
arrangement of elements in fig. 13.

occurs along the short axis of the original type I
rhombus (fig. 13). One could continue this process,
taking linear sequences along the axes of the rhombus
of a basic pattern type and using the sequence obtained
as the edge of a new, larger rhombus of the same shape
(or of a different shape: there are two kinds of rhombs
possible with 10-fold star-centers, which may be distin-
guished as (3 x 2) and (4 x 1) rhombs, using the present
notation). However, although this is a very fruitful
method for generating derivative patterns, and may
indeed have been used on occasion by Muslim artists,
there are many similar patterns which cannot be
derived in this way.

A different source of variety makes use of parallel
links (fig. 34). Only one example is illustrated, but it is
possible to classify such patterns in many different
categories; there is no end to this kind of variation. Of
even greater interest, it is possible to imitate many of
these derivative decagonal patterns in other rhombs of
the (3 x 2) series, especially in the case of (3 x 2)12,8
and (3 x 2)9,12, since in these there is very little distor-
tion of the pentagons, pentagrams, and other shapes of
the decagonal patterns. A number of such derivatives
exist as authentic patterns throughout Islam.

In the limited space available it has been possible to
give no more than a glimpse of some of the methods by
means of which these star patterns can be investigated.
There are of course many numerical procedures which
can be used to investigate different combinatorial
aspects of star-pattern construction beyond those
briefly mentioned above. We have dealt with only
rhombic configurations of star-centers—~and even here,
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Fig. 34. A further derivative pattern of 10-pointed stars, in which
some stars are joined by parallel links. The underlying grid is rhom-
bic, but the rhomb angles are no longer simple muitiples of 18°.

with only one series, the (3 x 2) series—and yet we have
not described ways in which rhombs of one or more
kinds can be arranged to build up repeating patterns.
This would entail a classification of rhombic tessella-
tions along lines somewhat different from those
employed in classifying tessellations of regular
polygons.

There are also many possibilities for repeating pat-
terns using almost regular star-centers, relatively few of
which exist as authentic Islamic ornament, and these
also lend themselves to numerical methods of investiga-
tion. Although by no means all authentic patterns are
based on rhombic tessellations, this does form a very
useful approach since it accounts for most of the com-
moner patterns, including hexagonal and square-based
arrangements as special cases. It is not suggested that
the first designers of Islamic patterns used similar lines
of rcasoning to those outlined above, but theoretical
studies of this kind are of particular value in that one
can attempt a systematic and exhaustive enumeration
of all possible ways of combining authentic star motifs
and their variation. Since no one can possibly study the
vast profusion of existing Islamic patterns at first hand
in order to be able to classify all authentic varieties, a
theoretical approach is clearly an advantage. It then
becomes of interest to compare the results of such
studies with the results actually achieved by the original
Muslim artists, since the comparison may provide clues
to the early craftsman’s understanding of the deeper
geometry of his patterns.

1.

NOTES

K. A. C. Creswell, A Bibliography of the Architecture, Arts and Crafts
of Islam to Ist January, 1960 (Cairo: American University at
Cairo Press, 1961), “Ornament,” pp. 963-78, and Supplement
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a general appraisal of the role of ornament in Islamic art, see
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of it was ever published (A. Pricto Vives and M. Gdémez-
Moreno, El Lazo: Decoracion geoméirica musulmana |Madrid,
1921]). A great deal of unpublished material still exists from this
collaboration, however, and it is to be published in the near
future (see M. Gémez-Moreno, ‘“Una de mis teorfas del
Lazo,”’ Cuadernos de la Alhambra 10-11 [Granada, 1974-75}). For
a discussion of this abortive collaboration and a list of papers
published by Prieto Vives, sce ID). Cabanelas, ‘‘L.a Antigua
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35 (Madrid, 1970): 435-37.

See the discussion by J. M. Rogers, ‘“The 11th Century—A
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Richards, ed., Islamic Civilisation 950-1150 (Papers on Islamic
History 3) (Oxford, 1973), pp. 221-24.

. Oleg Grabar (The Alhambra [London, 1978]), referring (on

pp. 195-96) to an unpublished doctoral thesis, cites “evidence
which is only now being discovered” indicating that new
methods of composing geometrical patterns after the tenth cen-
tury, emphasizing polygons and stars, were ‘‘made possible by
a conscious attempt on the part of professional mathematicians
and scientists to explain and to guide the work of artisans.”” It
is not yet clear whether this guidance refers to a choice of motifs
or their construction, or to methods of combining motifs in
repeating patterns, or whether perhaps the mathematicians
themselves are supposed to have designed new patterns effec-
tively. Even if this claim is true, the influence of the mathemati-
cians cannot have been very widespread or long lasting, judging
by the many clumsily constructed patterns in existence, often
employing widely varying and sometimes arbitrary methods of
layout, or even drawn more or less freehand.

. R. Orazi, Wooden Gratings in Safuvid Architecture (Rome, 1976),

text in Italian and English, p. 104 and note.

. My own unpublished rescarch.
. E. H. Lockwood and R. H. Macmillan, Geometric Symmetry

(Cambridge, 1978).

. These are (1) rotation about a point, (2) displacement in a given

direction, (3) ‘‘reflection”” across a straight line, and (4) a
‘“glide-reflection,””  which combines (2) and (3) in one
operation.

. Although many examples of Islamic patterns occur on the

curved surfaces of domes, true spherical patterns are rare; they
are principally found as quarter-spheres capping the hemicylin-
drical niche of many mihrabs. Hemispherical bosses sometimes
occur, decorated with geometrical patterns. A sphere is a real
surface of constant positive curvature, and Arab mathemati-
cians were familiar with its geometry. The hyperbolic plane on
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the contrary js an infinite imaginary surface of constant
negative curvature (i.e., it is everywhere saddle-shaped)
discovered by European mathematicians in the early nineteenth
century. It is possible to map the whole hyperbolic plane inside
a circle, and in this form many interesting tessellations have
been made visible. The Dutch artist Maurits Escher adapted
many of his bizarre tessellations to this circular representation.
See J. L. Locher, ed., The World of M. C. Escher (New York,

1971). No one seems yet to have attempted to adapt Islamic pat- -

terns to the hyperbolic plane.

. The class of tilings I have described here have been termed

edge-to-edge tilings. However, other types exist in which, for
example, one of two vertices limiting an edge of one tile lies part
way along an edge of an adjacent tile. Some Islamic tile patterns
are of this type.
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lengths without any loosc ends, it can be proved that the
crossovers can always be arranged so that along any band they
run alternately over and under other bands; two adjacent
crossovers of the same type need never occur. Thus the artist
has no need to worry that his interlacing pattern will not “‘work
out,” provided he does not start the crossovers simultaneously
in more than one place. The interlacing principle is linked to
certain topological properties of the plane, and there are other
mathematical surfaces on which it does not hold. See H. A.
Thurston, ‘‘Celtic Interlacing Patterns and Topology,”’ Science
News 33 (1954): 50-62.

In the tessellation of equilateral triangles, the vertices constitutc
hexads, the centers of the triangles triads, and the midpoints of
the edges diads. Any stars can be placed on these rotocenters in
which the numbers of points are multiples of 6, 3, and 2 respect-
ively. Similarly the tessellation of squares can accommodate
numbers that are multiples of 4, 4, and 2 respectively. Most, if
not all, of the simpler permutations of this kind are encountered
in authentic Islamic patterns.
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For a contrary view, cof. B. Pavén Maldonado, Arie
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A fact known to some fourteenth-century artists, since types I
and II arc used superimposed as decoration in Uljaytu’s
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Curves can be drawn from these equations in order to find pairs
of values for other kinds of rhombs. The values which are of
interest lic on the positive arms of hyperbolas, with asymptotes
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at m=2p, n=2¢. Each series has a pair of values for which
m=n=2p+q).

In a sense the construction of many Islamic patterns is arbitrary
until rules have been formulated defining the degrees of
regularity one wishes to achieve in each part or in the paitern
as a whole. Since rules of this kind were never explicitly stated
by the Muslim artist, it might be thought irrelevant to describe
authentic examples as “‘correctly’” or ‘‘incorrectly’” con-
structed. Nevertheless it seems evident that the majority of
artisans were striving for the highest level of symmetry and
regularity attainable in each pattern, and that the proportions
of the parts within the patterns were adjusted accordingly.
Using the principle of the greatest possible symmetry and
regularity as a basis for comparison, it becomes feasible to
define an ““incorrectly”’ constructed pattern as onc which falls
short of achieving the highest degree of symmetry possible for
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that particular pattern. Unfortunately one cannot appeal to
authentic patterns as the final arbiter, since there is rarely a
unique and universally adopted construction of any given
pattern.

The relative radii of two dissimilar stars constructed according
to the PIC method are in a precise ratio, the numerical value
of which can be calculated to any desired accuracy by
trigonometrical or other means. However, it is a curious fact
that the more nearly equal are the two values m and =, the closer
the respective radii are to the ratio m : n. So close are some of
these approximations to the theoretical values that it becomes
impossible to distinguish between the theoretical and m : n ratios
from measurements on authentic patterns.

K. Erdmann and Hanna Erdmann, Das anatolische Karavansaray
des 13. Jahrhunderts, pts. 2-3 in one vol. (Berlin, 1976), Die Orna-
ment, pp. 109-205.



